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BENZOLOGS OF ALLOPURINOL: SYNTHESIS OF
PYRAZOLO [4,3-g] AND [3,4-£]QUINAZOLINONES!)

Eckehard Cuny, F.W. Lichtenthaler® and Alfred Moser

Institut fiir Organische Chemie, Technische Hochschule Damstadt
D~6100 Daxmstadt, Germany

Convenient syntheses of pyrazolo[4 3—g]qu1nazolin-5 (6H)-one (3), its

xanthine oxidase metabclite 4 and the [3,4-f] analog 5 have been de-

veloped, inveolving anellation of the pyrimidine ring onto aminoindazol-

carboxylic acids 2 and 18, or attachment of the pyrazol portion onto

quinazolinone 22 Via intramolecular azo coupling.
Allopurinol (l1a), both a substrate for and, together with its chief metabolite oxipurinol
(2), a potent inhibitor of xanthine oxidase, is the most widely used drug for the treatment
‘of goutz) . This primary effect is augmented by secondary effects on pyrimidine and purine
bicsynthesis, most notably the specific inhibition of orotidylate decarboxylase by minor
metabolites such as allopurinol 1-ribonucleotide (2)2) ¢ whilst the respective 1-ribo-
micleoside is a detoxication product in mammalian systeltss) yet a potent growth inhibitor
for leishmanial parasmes‘”
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This high chemotherapeutic potential of allopurinol (Ja) and our previous studies on its
ribesylation 3) has led us to suspect a similar biological relevance for such base-modified
analogs in which the heterocyclic skeleton of ] or 2 is extended from within by insertion of
abenzeneringbetween&epyrazola:ﬂpqrinﬂ.dimporﬂms—m approach to bioactive
analogs that has been particularly sucoessful in the purine series®’ . We have, by consequence,
initiated work towards the synthesigs of such benzo-inserted allo- and oxi-purinols, six
structural isomers being possible for each. Prompted by a recent report on the preparation of
the [4,3-g] isomer 3 from 4-bromo-2-nethylaniline”) we here disclose our results an an
efficient, alternate access to 3 and its oxipurinol benzolog 4 from 5-methyl-6-nitroindazol
{6} as well as the synthesis of the [3,4-f] isomer 5 from either indazol or quinazoline

precursors.
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Key: A, FeS04/25 % aqueous NHi, in ethanol/water, go®c, 1a n”', — B, AG,0/HOAC, 25°%¢,

2 - 8 h. —C, chloral hydrate/NH,0H-HCL/Na,SO, in @il. HCL, 100°c, 2 min. — D, conc. HNO, /

conc. H,SO,, 100°¢, 2 h. — E, Cr03/conc. H,80, 5°c, 20 min, followed by CH,N,, o°c, 30 min.

— F, KMnO, in tBuOH/H,0, 8c°c, 6 h. — G, conc. u,80,, 80°C, 10 min. —H, 10 % Pasc, H, in

water. — [, 10 % P4/C, 85 % aqueous NH,NH, in ethanol, 80°C, 4 h. — K, 6 v HCL, 100°%C, 1 4.
L, 10 % H, 0, in dil. NaoH, 100°C, 10 min, followed by acidification (pH 5) and CH,N,,

! 2.2 ‘
treatment. —\M, 35 % dqueous HBF, in EtOAc, NaNO,, 5°C, 90 min. — N, HCONH_, 140°C, 4.5 h,

4q 2! 27
then 1.5 h at 180°C for 3 and 5; cyanogen in methanol or ethancl, OQC, 5h for 13 and 14. —

0, urea, 140°C, 1 h. — P, pyridine, 20°C, 12 h or Et ,NOAc/CHC1,, 20°c, 1 h.
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Of the two conceivable approaches for constructing the pyrazola[d,3-g|quinazoline ring system, the
anellation of the pyrimidine ring onto a suitably substituted indazol was oonsidered more pramising
and was materialized with readily accessible'® S-methyl-6-nitroindazol (g) as the educt and 6-amino-
indazol-5-carboxylic acid (2) as the key oompound.

Two reaction sequences”) were elaborated for the conversion § + 3, of which the Croj-oxidation of N‘—

acetylated § (i.e. Z, m.p. 185°C, 90 %) to the nitroindazol-carboxylic actd'® and ensuing in situ
esterification with diazamethane to § (m.p. 1625, 37 %) proved to be less efficient, affording 3 (m.p.
283°C after sublimation to needles at 260°C, 69 & for § + 9) in 23 % overall yield. In the alter-
nate pathway, oxidation and reduction steps were reversed to give 3 in 49 % overall yield via ]Q (m.p.
241-242%, 76 3%, 11 (m.p. 243-245%, 93 %) and permanganate oxidation to 12 (dec. ~ 300°C after sub-
limation to needles at 215°C, 69 %) with ensuing removal of the acetyl groups by acid (12 » 9, cuant.).

8)

Niementowski type reactions'? readily converted 9 into pyrazolo 4, 3-g]quinazolinones, formamide

yielding 3 (m.p. » axe, 72 %‘5)), urea correspondingly affording the respective 7-oxo analog 4 (m.p.
> 330%, 55 %), Similarly, action of cyanogen on methanclic or ethanolic solutions of 3 gave the
respective Z-methoxy-(13, dec. at 280°C after subl. to needles at 230°C, 60 %) and 2-ethoxy-pyrazolo-
quinazolinones (14, m.p. > 330°C after subl. ~ 170°C).

Construction of the pyrazolo[3,4-f]quinazolinone system 5 was effected via two independent preparative
routes, the first involving the anellation of a pyrimidine ring onto readily availsble'S) G-amino-
indazol 15 (28 % yield over five steps), the other comprising attachment of the pyrazol portion onto
the equally well accessible16] 6-methylquinazolinone 20 in four steps and an overall yield of 25 %,

The five-step conversion 15 + 5 involved the intvoduction of the carboxylic acid function at C-7 by a
procedure previously used by Sandmeyer'’) for the synthesis of isatin, i.e. reaction of 15 with chloral
hydrate/hydroxylamine to the N-oximincacetyl derivative ( 16, m.p. 199-201%C, 79 %) and ensuing sulfuric
acid-induced cyclizaticn to the pyrazolo-isatin 17 {m.p. » 300°C, 85 %). Subsequent oxidative ring
cleavage afforded 6-aminoindazol-carboxylic acid (18, m.p. 177% dec., 87 %), which via its ester 19
(m-p. 179-181°C, 76 3'®) was readily converted into 5 (m.p. 325-327°C, 74 %) by heating with
fomamice'®) . e alterate route 20 + 5 was initiated by nitration to 21 (m.p. 304-305°C, 67 3200,
followed by reduction to the S-amino derivative 22 (m.p. 260-261°C dec., 82 %) and diazotization in the
presence of HB]:"4 to the stable diazonium Eluoborate 23 (pale green crystals, m,p. 15’IDC dec., quant.),
and was concluded by pyridine- or tetraethylammonium acetate-induced intramolecular azo coupling (23 »
5, 49 &).

(W]

Evaluation of the biological properties of 3 - 5 have so far been limited to determine their substrate
and inhibitor capacity for xanthine oxidase”’. In fact, 3 is readily oxidized by xanthine oxidase to
the 7-oxo-derivative 4, as evidenced by TIC and, most characteristically, by UV data'!’, resalting in
an overall inhibitory effect (ID50 =7.3x 10-6 M} about four times lower as allopurinol (ID50 =1.7x
1070 M), e [3,4-7] isomer 5, however, has lower activity (5 x 1075 clearly indicating that angular
arrangement Of the pyrimidine and pyrazol portions of allopurinol are less propitious, either geametri-
cally or due to hydrogen bonding between N'-H and 0°. As suggested by models, more favorable resalts
may be expected for angrlar [4,3-f] and [3,4-k] analogs, their synthesis being presently wnderway, as
well as the conversion of these heterocycles into nucléosides and nucleotides.
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