BENZOLOGS OF ALLOPURINOL: SYNTHESIS OF PYRAZOLO [4,3-g] AND [3.4-f] QUINAZOLINONES¹⁾

Eckehard Cuny, F.W. Lichtenthaler* and Alfred Moser

Institut für Organische Chemie, Technische Hochschule Darmstadt D-6100 Darmstadt, Germany

Convenient syntheses of pyrazolo [4,3-g] quinazolin-5(6H)-one $(\underline{3})$, its xanthine oxidase metabolite $\underline{4}$ and the [3,4-f] analog $\underline{5}$ have been developed, involving anellation of the pyrimidine ring onto aminoindazol-carboxylic acids $\underline{9}$ and $\underline{18}$, or attachment of the pyrazol portion onto quinazolinone $\underline{22}$ via intramolecular azo coupling.

Allopurinol ($\underline{1a}$), both a substrate for and, together with its chief metabolite oxipurinol ($\underline{2}$), a potent inhibitor of xanthine oxidase, is the most widely used drug for the treatment of gout²). This primary effect is augmented by secondary effects on pyrimidine and purine bicsynthesis, most notably the specific inhibition of orotidylate decarboxylase by minor metabolites such as allopurinol 1-ribonucleotide ($\underline{1b}$)², whilst the respective 1-ribonucleoside is a detoxication product in mammalian systems³) yet a potent growth inhibitor for leishmanial parasites⁴).

This high chemotherapeutic potential of allopurinol ($\underline{1a}$) and our previous studies on its ribosylation⁵⁾ has led us to suspect a similar biological relevance for such base-modified analogs in which the heterocyclic skeleton of $\underline{1}$ or $\underline{2}$ is extended from within by insertion of a benzene ring between the pyrazol and pyrimidine portions — an approach to bioactive analogs that has been particularly successful in the purine series⁶⁾. We have, by consequence, initiated work towards the synthesis of such benzo-inserted allo- and oxi-purinols, six structural isomers being possible for each. Prompted by a recent report on the preparation of the [4,3-g] isomer $\underline{3}$ from 4-bromo-2-methylaniline⁷⁾ we here disclose our results on an efficient, alternate access to $\underline{3}$ and its oxipurinol benzolog $\underline{4}$ from 5-methyl-6-nitroindazol ($\underline{6}$) as well as the synthesis of the [3,4-f] isomer $\underline{5}$ from either indazol or quinazoline precursors.

Key: A, FeSO₄/25 % aqueous NH₃, in ethanol/water, 80°C, 18 h¹³. — B, Ac₂O/HOAc, 25°C, 2 - B h. — C, chloral hydrate/NH₂OH·HCl/Na₂SO₄ in dil. HCl, 100°C, 2 min. — D, conc. HNO₃/conc. H₂SO₄, 100°C, 2 h. — E, CrO₃/conc. H₂SO₄, 5°C, 20 min, followed by CH₂N₂, 0°C, 30 min. — F, KMnO₄ in tBuOH/H₂O, 80°C, 6 h. — G, conc. H₂SO₄, 80°C, 10 min. — H, 10 % Pd/C, H₂ in water. — I, 10 % Pd/C, 85 % aqueous NH₂NH₂ in ethanol, 80°C, 4 h. — K, 6 N HCl, 100°C, 1 d. — L, 10 % H₂O₂ in dil. NaOH, 100°C, 10 min, followed by acidification (pH 5) and CH₂N₂ treatment. — M, 35 % aqueous HBF₄ in EtOAc, NaNO₂, 5°C, 90 min. — N, HCONH₂, 140°C, 4.5 h, then 1.5 h at 180°C for 3 and 5; cyanogen in methanol or ethanol, 0°C, 5 h for 13 and 14. — O, urea, 140°C, 1 h. — P, pyridine, 20°C, 12 h or Et₄NOAc/CHCl₃, 20°C, 1 h.

Of the two conceivable approaches for constructing the pyrazolo [4,3-g] quinazoline ring system, the anellation of the pyrimidine ring onto a suitably substituted indazol was considered more promising⁸⁾ and was materialized with readily accessible $^{10)}$ 5-methyl-6-nitroindazol ($\underline{6}$) as the educt and 6-amino-indazol-5-carboxylic acid ($\underline{9}$) as the key compound.

Two reaction sequences 11) were elaborated for the conversion $\underline{6} + \underline{9}$, of which the CrO_3 -oxidation of N¹-acetylated $\underline{6}$ (i.e. $\underline{7}$, m.p. 185°C , 90%) to the nitroindazol-carboxylic acid 12) and ensuing in situ esterification with diazomethane to $\underline{8}$ (m.p. 162°C , 37%) proved to be less efficient, affording $\underline{9}$ (m.p. 283°C after sublimation to needles at 260°C , 69% for $\underline{8} + \underline{9}$) in 23% overall yield. In the alternate pathway, oxidation and reduction steps were reversed to give $\underline{9}$ in 49% overall yield via $\underline{10}$ (m.p. $241-242^{\circ}\text{C}$, $76\%^{13}$), $\underline{11}$ (m.p. $243-245^{\circ}\text{C}$, 93%) and permanganate oxidation to $\underline{12}$ (dec. ~300°C after sublimation to needles at 215°C , 69%) with ensuing removal of the acetyl groups by acid ($\underline{12} + \underline{9}$, quant.).

Niementowski type reactions¹⁴⁾ readily converted $\underline{9}$ into pyrazolo[4,3-g]quinazolinones, formamide yielding $\underline{3}$ (m.p. > 330°C, 72 % ¹⁵⁾), urea correspondingly affording the respective 7-oxo analog $\underline{4}$ (m.p. > 330°C, 55 %). Similarly, action of cyanogen on methanolic or ethanolic solutions of $\underline{9}$ gave the respective 2-methoxy-($\underline{13}$, dec. at 280°C after subl. to needles at 230°C, 60 %) and 2-ethoxy-pyrazolo-quinazolinones ($\underline{14}$, m.p. > 330°C after subl. ~170°C).

Construction of the pyrazolo [3,4-f] quinazolinone system $\underline{5}$ was effected via two independent preparative routes, the first involving the anellation of a pyrimidine ring onto readily available $^{13)}$ 6-amino-indazol $\underline{15}$ (28 % yield over five steps), the other comprising attachment of the pyrazol portion onto the equally well accessible $^{16)}$ 6-methylquinazolinone $\underline{20}$ in four steps and an overall yield of 25 %.

The five-step conversion $\underline{15} \rightarrow \underline{5}$ involved the introduction of the carboxylic acid function at C-7 by a procedure previously used by Sandmeyer¹⁷⁾ for the synthesis of isatin, i.e. reaction of $\underline{15}$ with chloral hydrate/hydroxylamine to the N-oximinoacetyl derivative ($\underline{16}$, m.p. $199-201^{\circ}$ C, 79 %) and ensuing sulfuric acid-induced cyclization to the pyrazolo-isatin $\underline{17}$ (m.p. > 300° C, 85 %). Subsequent oxidative ring cleavage afforded 6-aminoindazol-carboxylic acid ($\underline{18}$, m.p. 177° C dec., 87 %), which via its ester $\underline{19}$ (m.p. $179-181^{\circ}$ C, 74 % 18°) was readily converted into $\underline{5}$ (m.p. $325-327^{\circ}$ C, 74 %) by heating with formamide 19° . The alternate route $\underline{20} \rightarrow \underline{5}$ was initiated by nitration to $\underline{21}$ (m.p. $304-305^{\circ}$ C, 67 % 20°), followed by reduction to the 5-amino derivative $\underline{22}$ (m.p. $260-261^{\circ}$ C dec., 82 %) and diazotization in the presence of HEF₄ to the stable diazonium fluoborate $\underline{23}$ (pale green crystals, m.p. 157° C dec., quant.), and was concluded by pyridine- or tetraethylammonium acetate-induced intramolecular azo coupling ($\underline{23} \rightarrow \underline{5}$, 49 %).

Evaluation of the biological properties of $\frac{3}{2} - \frac{5}{2}$ have so far been limited to determine their substrate and inhibitor capacity for xanthine oxidase 21 . In fact, $\frac{3}{2}$ is readily oxidized by xanthine oxidase to the 7-oxo-derivative $\frac{4}{2}$, as evidenced by TLC and, most characteristically, by UV data 11 , resulting in an overall inhibitory effect (ID₅₀ = 7.3 x 10⁻⁶ M) about four times lower as allopurinol (ID₅₀ = 1.7 x 10⁻⁶ M). The [3,4-f] isomer $\frac{5}{2}$, however, has lower activity (5 x 10⁻⁵) clearly indicating that angular arrangement of the pyrimidine and pyrazol portions of allopurinol are less propitious, either geometrically or due to hydrogen bonding between N¹-H and 0⁹. As suggested by models, more favorable results may be expected for angular [4,3-f] and [3,4-h] analogs, their synthesis being presently underway, as well as the conversion of these heterocycles into nucleosides and nucleotides.

REFERENCES AND NOTES

- 3. Nucleosides, 37.—Grateful acknowledgement is made to the Fonds der Chemischen Industrie for support of this work.—Part 36: F.W. Lichtenthaler, E. Cuny, T. Morino, and I.Rychlik, Chem. Ber. 112, 2588 (1979).
- 2. D.P. Mertz, "Gicht", 2. Aufl., p. 348 ff., Thieme, Stuttgart 1973; G.B. Elion, Hardb. Exp. Pharmacol. 51, 485 ff (1978).
- T.A. Krenitzky et al., Arch. Biochem. Biophys. <u>150</u>, 585 (1972).
- 4. D.J. Nelson et al., J. Biol. Chem. 254, 3959, 11544 (1979).
- 5. F.W. Lichtenthaler, P. Voss, and A. Heerd, Tetrahedron Lett. 1974, 2141; E. Cuny and F.W. Lichtenthaler, Nucleic Acide Res. Spec. Publ. 1, s25 (1975).
- 6. G.E. Keyser and N.J. Leonard, J. Org. Chem. 44, 2989 (1979), and earlier papers.
- 7. R.H. Foster and N.J. Leonard, J. Org. Chem. 44, 4609 (1979).
- 8. The alternate pyrazol anellation onto the quinazoline ring system via diazotization of a 7-amino-The alternate pyrazol ameliation cuto the quinazoline ring system via diazotization or a ℓ -amino-6-methylquinazolinone and subsequent intramolecular azo coupling (I \rightarrow 3) was deemed difficult if at all feasible, since diazo ester intermediate II, like I lacking a "normal ortho-relation" of methyl and diazo groups, does not even give traces of IH-benz[f]indazol (III). This anticipation proved to be correct as evidenced by the resistance of I towards ring closure. and by the smooth formation of the respective indazols from diazonium salts IV (pyridine, 25°C, 91 % IH-benz[z]indazol) and $23 \leftarrow 5$, both having the electron-withdrawing effect of the diazonium molety in direct mesomeric linkage to the methyl group,

- 9. R. Huisgen and H. Nakaten, Liebige Ann. Chem. <u>586</u>, 84 (1954).
- 10. E. Nölting, Ber. Disch. Chem. Ges. 37, 2556 (1904).
- 11. All the new compounds gave satisfactory elemental analysis and IR, ¹H-NYR, MS and UV spectra in accord with the structures proposed; the yields have not been optimized. Spectral characteristics (1H-NMR in (CD3)250, MS at 70 eV) of:
 - 3: ^{1}H -NMR: δ = 7.78, 8.10, 8.44 and 8.76 (four 1H-s, H-3, H-4, H-7 and H-9), 11.92 and 13.36 (two br. 1H-s, 2 NH, exchangeable with D_2O). MS: π/e = 186 (100 %).
 - 4: 1 H-NMR: δ = 7.22 (1H-s, H-3), 8.50 and 8.27 (two 1H-s, H-4 and H-9), 13.00 and 11.14 (two br. s, 1H and 2H, 3 NH). MS: H/e = 202 (M^{+}), 159 (M CONH). UV (pH 7.5): λ_{max} = 203 nm (ϵ x 10⁻³ = 17.98), 239 (sh, 45.82), 245 (52.83), 307 (6.12).
 - 5: 1 H-NMR: δ = 7.45, 8.22 (two 9 Hz-d, 1H-d, 1H each, H-4 and H-5), 8.30, 8.32 (two 1H-s, H-3 and H-7), 13.44 (br. 2H-m, 2 NH). MS: m/e = 186 (100 %). UV (pH 7.5): $\lambda_{\text{max}} = 255 \text{ rm}$ (ϵ x 10⁻³ = 20.4), 315 (7.15), 327 (7.25).
 - 9: 1 H-NMR (DMSO+D2O): δ = 6.68 (0.8 Hz-t, 1H, H-4), 7.95 and 8.32 (two 0.8 Hz-d, 1H each, H-3 and H-7). MS: m/e = 177 (81 %), 159 (100 %), 132 (97 %).
 - 19: ^{1}H -NMR: δ = 4.00 (3H-s, OCH₃), 7.36 and 7.69 (two 9 Hz-d, 1H each, H-4 and H-5), 7.40 (br. 2H-m, NH₂), 7.94 (1H-s, H-3), 12.55 (br. 1H-s, N ^{1}H). MS: m/e = 191 (100 %), 159 (98 %), 131 (32 %).
 - 22: 1 H-NMR: δ = 2.13 (3H-s, CH₃), 6.70 and 7.36 (two 8.5 Hz-d, 1H each, H-7 and H-8), 7.0 (2H-m, NH₂), 7.88 (1H-s, H-2), 11.67 (br. 1H-s, NH). MS: m/e = 175 (100 %).
- 12. The 6-nitroindazolearboxylic acid (§, H instead of CH₃) may be isolated (yellow crystals of m.p. 143^oC, dec.), yet in low yield due to its high tendency for decarboxylation.
- 13. R.R. Davis, J. Chem. Soc. 1955, 2412.
- S. v.Niementowski, J. Pnakt. Chem. 51, 564 (1895); J.F. Meyer and E.C. Wagner, J. Org. Chem. 8, 239 (1943).
 This amounts to an overfall yield of 35% for the five step, large scale adaptable conversion 6, 10, 11 + 9 + 3, comparing favorably with the 29% obtained for the synthesis of 3 in five steps from 4-brono-2-methylaniline?
- V. Oakes, H.N. Rydon, and K. Undheim, J. Chem. Soc. <u>1962</u>, 4678.
- 17. T. Sandmeyer (I.R. Geigy), German Pat. 113 848 (1899); Helv. Chim. Acta 2, 234 (1919).
- 18. Methylation of 18 with diazongthane produced, aside 19, small amounts of 6-amino-7-methoxycarbonyl-1-methylindazol (m.p. 218-219°C, 6 %), readily separable from the mother liquor of 19 by chromatography.
- 19. Attempts for direct cyclication of 18 with formamide resulted in the formation of 6-formamide-indazol (m.p. 205-207°C, 53 %) due to loss of the carboxylic acid function.
- 20. Even under drastic conditions (nitrating acid, 100°C) 20 exclusively yielded 21 (TLC), indicating that amino and carboxamide functions have a high directive effect. This finding is complemented by the equally regionselective hitrations of 7-methyl- and 8-methyl-quinazolin-4(3#)-ones, which preferentially yield the 6-nitro derivatives of m.p. 303°C (51 %) and 269-271°C (88 %), respectively; 5-methylquinazolin-4(3#)-one, however, preferentially afforded the 6,8-dinitro compound of m.p. 234-236 C (A. Moser and E. Cuny, unpublished results).
- .21. We are indebted to Drs. Johanna Fischer and U. Jahn, Pharmacology Research Laboratory, Siegfried AG, Zofingen, Switzerland, for kindly performing these experiments.